Problem Analysis Session

SWERC judges

28/01/2024

1

Problem Analysis Session

Statistics

Number of clarification requests: 52 (about 42 answered "No comment.")

I: Throwing dice

Solved by 98 teams before freeze. First solved after 11 min by STM32G431CB (Artois University).

I: Throwing dice

Problem

Compare two probabilities

Solution – Linear time & constant space

- The score of player X is distributed symmetrically around E[X], and takes the values E[X] if E[X] is integer, or E[X] ± 1/2 otherwise.
- The expected score for an S-sided die is (1+S)/2.

Consequently,

$$\mathbb{P}_A > \mathbb{P}_B \Leftrightarrow \mathbb{E}[A] > \mathbb{E}[B]$$

$$\Leftrightarrow A_1 + A_2 + \dots + A_M + M > B_1 + B_2 + \dots + B_N + N.$$

F: Programming-trampoline-athlon!

Solved by 97 teams before freeze. First solved after 12 min by **EPFL Polympiads 1 (EPFL)**.

Find the medalists of Programming-trampoline-athlon.

Solution – Linear time & space

• The score of a team is given by

$$P \cdot 10 + E_1 + \cdots + E_6 - \min(E_1, \dots, E_6) - \max(E_1, \dots, E_6)$$

- Compute the score for each team, store the three best scores, and output the information about the teams reaching these scores.
- Quasilinear time solution also accepted: Compute the score for each team, sort, and output at least 3 scores until reaching a different score.

Solved by 38 teams before freeze. First solved after 17 min by Heroes of the C (Universidade do Porto).

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

Find the longest horizontal line between two points on a path.

- The nicest view is obtained either at a milestone or looking at a milestone.
- At each step k, remember those integers $\ell < k$ such that $H_i < H_\ell$ whenever $\ell < i \leq k$.
- You can see at distance $d_k = k \ell_{\max} (H_{\ell_{\max}} H_k)/(H_{\ell_{\max}} H_{\ell_{\max}+1}).$
- Do not forget to look on you right too! (i.e., go backwards)

L: Broken trophy

Solved by 13 teams before freeze. First solved after 22 min by cnXtv (École Polytechnique).

Assemble rectangular pieces (tiles) with sides $\in \{1, 2, 3\}$ into a $3 \times N$ rectangle.

This looks like these classic pentomino tilings puzzles

- with simpler tiles (6 different rectangles)
- but with up to $3 \cdot 10^5$ tiles!

Assemble rectangular pieces (tiles) with sides $\in \{1, 2, 3\}$ into a $3 \times N$ rectangle.

Solution – Linear time & space

You can always assemble your tiles as follows:

				$\{1, 2, 3$	$\} imes 1$	3	8	1×1	1>	<1 2	! imes 1	2 imes 1	1 ×1	1×1
3×3 ··· 3	3 × 3 2 ×	< 3 · · ·	2 imes 3	2 × 2	2 2 2	\times	 ×	۲۵. ۲۷	· · ç	<u>۷</u> 2	2 imes 1	 2 imes 1	$1 \times 1 \cdot \cdot$	\cdot 1×1
				2 × 2 · ·		1	1	î.	-	<u></u> 2	2 imes 1	2 imes 1	$1\!\!\times\!\!1$	$1\!\!\times\!\!1$

Assemble rectangular pieces (tiles) with sides $\in \{1, 2, 3\}$ into a $3 \times N$ rectangle.

Solution – Linear time & space

You can always assemble your tiles as follows:

	3 >	< 3		3 × 3	2 ×	3 · · ·	2 × 3	$\begin{cases} 1, \\ 2 \times 1 \end{cases}$	2,3} : 2 · · · 2	$\frac{\times 1}{2 \times 2}$	T × 3	$\begin{array}{c c} 1 \times 3 \\ 1 \times 2 & 1 \\ \cdot & \cdot \end{array}$	1×2	$ \begin{array}{c} 1 \\ 2 \\ \times 1 \\ 2 \\ 2 \\ \times 1 \end{array} $		2 imes 1 1> 2 imes 1 1> 2 imes 1 1> 2 imes 1 1>	$(1 1 \times 1)$ $(1 \cdot \cdot \cdot 1 \times 1)$ $(1 1 \times 1)$
2	. 1		0		1 0		1 1		1 0	L	2	1 4 4		0 1			h ak a
2	$\times 1$		$2 \times .$	L 3×		$\times 1$	┥┝	3 ×	1 3	$\times 1$	3 ×	1 µ×1	┥┝	3 × 1	1×1	1×1µ×1	1×1µ×1
2	× 2		2×2	$2 2 \times 2$	2×2	2×2	2	2 × 2	2 imes 2	2×2	2×2	2×2	····	2 × 2	2×2	2×2	 2 × 2

A: Card game

Solved by 25 teams before freeze. First solved after 22 min by flag[10] (Università di Pisa).

Find the minimum number of single-card moves required to organize the cards in your hand.

Solution – $\mathcal{O}(N \log N)$ time complexity

- First, imagine a total order on the cards is required.
 - Observations:
 - The cards not moved are already in increasing order.
 - One move is required for each moved card.
 - The cost is N LIS, where LIS is the size of a longest increasing subsequence.
 - Use an $\mathcal{O}(N \log N)$ algorithm for finding LIS.
 - * Uses an array where position i contains the smallest value that ends an increasing subsequence of length i + 1.

• Go over all 4! valid orders (corresponding to suit orderings), and take the minimum.

K: Team selection

Solved by 49 teams before freeze. First solved after 26 min by Volterra gng (Università di Pisa).

Repeatedly find and extract the k-th element among an ordered list of elements.

Solution – $O(N \times \log(N))$

- For each element, store a 0 or a 1 to denote whether it was picked.
- Maintain a segment tree on these elements.
- Given k, traverse the segment tree efficiently to find the k-th non-zero element in $O(\log(N))$.
- Set it to 0 and update the segment tree in $O(\log(N))$.

Alternate solutions

- C++'s order_statistics_tree: also $O(N \times \log(N))$ but too slow by a factor 3 in practice.
- Binary search on the segment tree: $O(N \times \log(N)^2)$. Accepted if efficiently implemented.
- Maintain an array of the remaining elements, together with an array of picked indices, update the array once every $O(\sqrt{N})$ queries.
 - Total $O(N^{3/2})$, too slow, but only by a factor 3.
- Naïve $O(N^2)$, too slow.

Solved by 24 teams before freeze. First solved after 35 min by **eXotic (École Polytechnique)**.

Give the minimum number of crayons and pins required to represent every country.

Solution – Cubic time & quadratic space

- Represent the link between countries and color as a graph.
- This creates a **bipartite** graph with N + M vertex and at most N * M edges.
- Then representing all countries corresponds to the minimum vertex cover problem.
- For bipartite graph, using Koenig's theorem, this equivalent to maximal matching.
- Doable in O(V * E) = O(NM(N + M)).

Solved by 55 teams before freeze. First solved after 37 min by doublETHink (ETH Zürich).

Place strictly positive integer weights on a subset of the edges of a tree, such that the total sum of edge weights equals P, and the maximum possible weight of a path is minimized.

Solution – Linear time & linear space

- Place weights "as uniformly as possible" on edges incident to leaves
 - Good intuition: longest path should go through leaves
- Maximum weight for a path is:
 - 2 * (P/NumberOfLeaves) if P%NumberOfLeaves = 0
 - 2 * (P/NumberOfLeaves) + 1 if P%NumberOfLeaves = 1
 - 2 * (P/NumberOfLeaves) + 2 if $P\%NumberOfLeaves \ge 2$
- To compute the answer, all you have to do is (read the input and) count leaves.
- Sample was misleading (yeah, well...), but: other solutions? proofs of correctness?

Solved by 4 teams before freeze. First solved after 67 min by UNIBOis (University of Bologna).

A metro map is given. A player thinks of a random line, the second must guess by asking if the line goes through a given station. Find the strategy minimizing the expected (average) number of questions.

Solution – $O((M + N) * M * 2^N)$ time

- Dynamic programming
- State is two bitsets, (set of stations with constraints, constraints on these)
- Number of states is $M * 2^N$, not $2^N * 2^N$

A metro map is given. A player thinks of a random line, the second must guess by asking if the line goes through a given station. Find the strategy minimizing the expected (average) number of questions.

Solution – $O((M + N) * M * 2^N)$ time

- In a state S, choose the best station to ask about.
- Call S_i the state where the line must go through station i and S_{¬i} the state where the line must not go through station i.

$$M(S) = \min_{0 \le i < N} P(i) * M(S_i) + P(\neg i) * M(S_{\neg i})$$

A metro map is given. A player thinks of a random line, the second must guess by asking if the line goes through a given station. Find the strategy minimizing the expected (average) number of questions.

Solution – $O((M + N) * M * 2^N)$ time

$$M(S) = \min_{0 \le i < N} P(i) * M(S_i) + P(\neg i) * M(S_{\neg i})$$

• To compute the probabilities, need to compute the lines still possible in a given state.

• Precomputing it is slower than doing it on-demand (hash table is too large).

Solved by 2 teams before freeze. First solved after 142 min by **eXotic (École Polytechnique)**.

Problem

Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Problem

Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – $O(KN^2p(N))$ insertions/lookups & O(Np(N)) space

• Cycle decomposition (without labels) enough to detect identity, e.g.,

Problem

Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – $O(KN^2p(N))$ insertions/lookups & O(Np(N)) space

• Cycle decomposition (without labels) enough to detect identity, e.g.,

• Dynamic programming over integer partitions of N, e.g., 7 + 4 + 2 + 1 = 15. \Rightarrow number of integer partitions p(N) small, $p(N) \leq p(30) = 5604$.

Problem

Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – $O(KN^2p(N))$ insertions/lookups & O(Np(N)) space

• Cycle decomposition (without labels) enough to detect identity, e.g.,

• Dynamic programming over integer partitions of N, e.g., 7 + 4 + 2 + 1 = 15. \Rightarrow number of integer partitions p(N) small, $p(N) \le p(30) = 5604$.

• All permutations: reverse process, start from identity backwards. \Rightarrow normalization required: number of permutations with decomposition (t_1, \ldots, t_N) ,

$$c(t_1,\ldots,t_N) = N! / (t_1!t_2!\ldots t_N! \cdot 1^{t_1}2^{t_2}\ldots N^{t_N})$$

Solved by 2 teams before freeze. First solved after 148 min by **dETHroners (ETH Zürich)**.

G: Favourite dish

Problem

Calculate each person's favorite dish based on the weights and scores.

Solution – O(NlogN + MlogM) time & linear space If we calculate the whole score table, it takes O(NM) time which is too high. Person \Dish 2 3 4 3.2 3.4 3.2 3.0 We can sort the persons by their weight on taste. like: 3 3.5* 3.5 3.5 3.0 5.0* 2 4.4 3.8 2.4 After sorting, each dish (each column) is a ascending or descending sequence. Person \Dish 3 2 4 3.4* 32 3.2 3.0 Then sort the dishes by the first person's score, like: 3 3.5 3.5* 3.0 3.5 2 5.0* 3.8 4.4 2.4

Solution – O(NlogN + MlogM) time & linear space For each dish, the scores look like an ascending or descending polyline. We may start from the first dish, process the dishes one by one, and maintain a "list of currently highest score" ("h-list") for each person.

G: Favourite dish

Solution – O(NlogN + MlogM) time & linear space

At any time, the h-list is also a polyline. We can prove that the polyline of dish i and the h-list after processing dish i - 1 have at most one intersection point.

That intersection point (if exists) can be found by binary search. With this algorithm, the complexity can be reduced to O(NlogN + MlogM).

Alternatively, this it can also be solved with convex hull model.

G: Favourite dish

Solution – O(NlogN + MlogM) time & linear space

At any time, the h-list is also a polyline. We can prove that the polyline of dish i and the h-list after processing dish i - 1 have at most one intersection point.

That intersection point (if exists) can be found by binary search. With this algorithm, the complexity can be reduced to O(NlogN + MlogM).

Alternatively, this it can also be solved with convex hull model.

Not solved before freeze.

Given a non-crossing polygon, how many triples of vertices are such that the center of mass of the polygon lies (strictly) inside the triangle formed by these vertices?

Solution – $\mathcal{O}(N \log(N))$ time complexity

- 1. Compute center of mass
- 2. Count every such triples
- 3. Fix bugs.

Solution – $\mathcal{O}(N \log(N))$ time complexity

- 1. Compute center of mass
- 2. Count every such triples
- 3. Fix bugs.
 - easy given a triangulation of the polygon,
 - but this is not needed: a signed triangulation suffices.

Solution – $\mathcal{O}(N \log(N))$ time complexity

- 1. Compute center of mass
- 2. Count every such triples
- 3. Fix bugs.

The only thing that matters is the angle formed with the center of mass (and any fixed line)

Solution – $\mathcal{O}(N \log(N))$ time complexity

- 1. Compute center of mass
- 2. Count every such triples
- 3. Fix bugs.
 - Floats are too imprecise
 - Exact representation of rationals may go out of bounds
 - The center of mass may be on an edge
 - The center of mass can be one of the vertices
 - Two vertices may have the same angle

M: In-order

Given pre-order, post-order, a consecutive part of in-order. How many possible in-orders?

Solution – Linear time & linear space

Only knowing the pre-order and post-order cannot determine a binary tree, but we can determine the tree to the following extent ->

(1) Question: if none of the inorder is known, how many possible inorders are there?

Answer: 2^{number} of nodes with 1 child

(2) Question: if only root's position is known?

Answer: In addition to (1), we know the root's child (I/r) location (if the root has 1 child).

(3) Question: if root + one other node X's positions are known?

Problem Analysis Session

(3) Question: if root + one other node X's positions are known?

Answer: we can determine the tree to the following extent ->

(4) Question: if root + multiple nodes' positions are known?

Answer: For all known nodes' all ancestors, if it has 1 child, its child (I/r) location is determinate.

(5) Question: if only 1 node X's position is known?

Answer: Only X itself's and its ancestors' child (I/r) location (if it has 1 child) are relevant to its position in inorder. Therefore, we need to calculate a combination.

(6) Question: if multiple nodes' positions are known?

Answer: A continous part in the inorder must contain a single node with the maximum height, we call it X.

Then we combine two independent things:

- \bullet the child (l/r) location of X's ancestors
- \bullet the child (l/r) location of the nodes in the subtree whose root is X

