
Problem Analysis Session

SWERC judges

28/01/2024

Problem Analysis Session 1



Statistics

Number of submissions: about 1424

Number of clarification requests: 52 (about 42 answered “No comment.”)

Problem Analysis Session Statistics 2



I: Throwing dice

Solved by 98 teams before freeze.
First solved after 11min by
STM32G431CB (Artois University).

Problem Analysis Session I: Throwing dice 3



I: Throwing dice

Problem
Compare two probabilities

Solution – Linear time & constant space
The score of player X is distributed symmetrically around E[X ], and takes the values E[X ]
if E[X ] is integer, or E[X ]± 1/2 otherwise.
The expected score for an S-sided die is (1 + S)/2.

Consequently,

PA > PB ⇔ E[A] > E[B]
⇔ A1 + A2 + · · ·+ AM +M > B1 + B2 + · · ·+ BN + N.

Problem Analysis Session I: Throwing dice 4



F: Programming-trampoline-athlon!

Solved by 97 teams before freeze.
First solved after 12min by
EPFL Polympiads 1 (EPFL).

Problem Analysis Session F: Programming-trampoline-athlon! 5



F: Programming-trampoline-athlon!

Problem
Find the medalists of Programming-trampoline-athlon.

Solution – Linear time & space
The score of a team is given by

P · 10 + E1 + · · ·+ E6 −min(E1, . . . ,E6)−max(E1, . . . ,E6)

Compute the score for each team, store the three best scores, and output the information
about the teams reaching these scores.
Quasilinear time solution also accepted: Compute the score for each team, sort, and
output at least 3 scores until reaching a different score.

Problem Analysis Session F: Programming-trampoline-athlon! 6



E: Nicest view

Solved by 38 teams before freeze.
First solved after 17min by
Heroes of the C (Universidade do Porto).

Problem Analysis Session E: Nicest view 7



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7ℓmax = 2
ℓ = 2

ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7ℓmax = 2
ℓ = 2

ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7ℓmax = 2
ℓ = 2

ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1

k = 2

k = 3 k = 4 k = 5 k = 6 k = 7ℓmax = 2
ℓ = 2

ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2

k = 3

k = 4 k = 5 k = 6 k = 7

ℓmax = 2

ℓ = 2
ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2 k = 3

k = 4

k = 5 k = 6 k = 7ℓmax = 2

ℓ = 2
ℓmax = 3

ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2

d2 = 13/4

k = 1 k = 2 k = 3 k = 4

k = 5

k = 6 k = 7

ℓmax = 2

ℓ = 2
ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2 k = 3 k = 4 k = 5

k = 6

k = 7ℓmax = 2
ℓ = 2

ℓmax = 3 ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2d2 = 13/4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 7

ℓmax = 2
ℓ = 2

ℓmax = 3

ℓmax = 6

k = 2

Problem Analysis Session E: Nicest view 8



E: Nicest view

Problem
Find the longest horizontal line between two points on a path.

Solution – Linear time & space
The nicest view is obtained either at a milestone or looking at a milestone.
At each step k , remember those integers ℓ < k such that Hi < Hℓ whenever ℓ < i ⩽ k .
You can see at distance dk = k − ℓmax − (Hℓmax − Hk)/(Hℓmax − Hℓmax+1).
Do not forget to look on you right too! (i.e., go backwards)

d5 = 5/2

d2 = 13/4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7ℓmax = 2
ℓ = 2

ℓmax = 3

ℓmax = 6k = 2

Problem Analysis Session E: Nicest view 8



L: Broken trophy

Solved by 13 teams before freeze.
First solved after 22min by
cnXtv (École Polytechnique).

CHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONSCHAMPIONS

C
H
A
M

P
IO

N
S

C
H
A
M

P
IO

N
S

C
H
A
M

P
IO

N
S

CHAMPIONSCHAMPIONSCHAMPIONS
CHAMPIONS
CHAMPIONSCHAMPIONSCHAMPIONS

C
H
A
M

P
IO

N
SCHAMPIONS

C
H
A
M

P
IO

N
S

C
H
A
M

P
IO

N
S

CHAMPIONSCHAMPIONS
vs

Problem Analysis Session L: Broken trophy 9



L: Broken trophy

Problem
Assemble rectangular pieces (tiles) with sides ∈ {1, 2, 3} into a 3 × N rectangle.

This looks like these classic pentomino tilings puzzles
— with simpler tiles (6 different rectangles)
— but with up to 3 · 105 tiles!

Problem Analysis Session L: Broken trophy 10



L: Broken trophy

Problem
Assemble rectangular pieces (tiles) with sides ∈ {1, 2, 3} into a 3 × N rectangle.

Solution – Linear time & space
You can always assemble your tiles as follows:

· · · · · · · · · · · · · · · · · ·
· · ·3 × 3 3 × 3 2 × 3 2 × 3

2 × 2 2 × 2

{1, 2, 3} × 1

1
×

3

1
×

3

2 × 1
2 × 1
2 × 1

2 × 1
2 × 1
2 × 1

1×1

1×1

1×1

1×1

1×1

1×11×1

1
×

2

1×1

1
×

2

Problem Analysis Session L: Broken trophy 10



L: Broken trophy

Problem
Assemble rectangular pieces (tiles) with sides ∈ {1, 2, 3} into a 3 × N rectangle.

Solution – Linear time & space
You can always assemble your tiles as follows:

· · · · · · · · · · · · · · · · · ·
· · ·3 × 3 3 × 3 2 × 3 2 × 3

2 × 2 2 × 2

{1, 2, 3} × 1

1
×

3

1
×

3

2 × 1
2 × 1
2 × 1

2 × 1
2 × 1
2 × 1

1×1

1×1

1×1

1×1

1×1

1×11×1

1
×

2

1×1

1
×

2

· · · · · · · · · · · ·
2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

2 × 1 2 × 1 3 × 1 3 × 1 3 × 1 3 × 1 3 × 1 3 × 11×1 1×11×11×1 1×11×1

Problem Analysis Session L: Broken trophy 10



A: Card game

Solved by 25 teams before freeze.
First solved after 22min by
flag[10] (Università di Pisa).

2
2

2
2

1
1

1
1

2 2

2 2

4 4

4 4

3
3

3
3

5
5

5
5

Problem Analysis Session A: Card game 11



A: Card game

Problem
Find the minimum number of single-card moves required to organize the cards in your hand.

Solution – O(N logN) time complexity
First, imagine a total order on the cards is required.

▶ Observations:
⋆ The cards not moved are already in increasing order.
⋆ One move is required for each moved card.

▶ The cost is N − LIS , where LIS is the size of a longest increasing subsequence.
▶ Use an O(N logN) algorithm for finding LIS .

⋆ Uses an array where position i contains the smallest value that ends an increasing subsequence
of length i + 1.

Go over all 4! valid orders (corresponding to suit orderings), and take the minimum.

Problem Analysis Session A: Card game 12



K: Team selection

Solved by 49 teams before freeze.
First solved after 26min by
Volterra gng (Università di Pisa).

Problem Analysis Session K: Team selection 13



K: Team selection

Problem
Repeatedly find and extract the k-th element among an ordered list of elements.

Solution – O(N × log(N))

For each element, store a 0 or a 1 to denote whether it was picked.
Maintain a segment tree on these elements.
Given k, traverse the segment tree efficiently to find the k-th non-zero element in
O(log(N)).
Set it to 0 and update the segment tree in O(log(N)).

Problem Analysis Session K: Team selection 14



K: Team selection

Alternate solutions
C++’s order_statistics_tree: also O(N × log(N)) but too slow by a factor 3 in practice.
Binary search on the segment tree: O(N × log(N)2). Accepted if efficiently implemented.
Maintain an array of the remaining elements, together with an array of picked indices,
update the array once every O(

√
N) queries.

▶ Total O(N3/2), too slow, but only by a factor 3.

Naïve O(N2), too slow.

Problem Analysis Session K: Team selection 15



B: Supporting everyone

Solved by 24 teams before freeze.
First solved after 35min by
eXotic (École Polytechnique).

GERMANY

Problem Analysis Session B: Supporting everyone 16



B: Supporting everyone

Problem
Give the minimum number of crayons and pins required to represent every country.

Solution – Cubic time & quadratic space
Represent the link between countries and color as a graph.
This creates a bipartite graph with N +M vertex and at most N ∗M edges.
Then representing all countries corresponds to the minimum vertex cover problem.
For bipartite graph, using Koenig’s theorem, this equivalent to maximal matching.
Doable in O(V ∗ E ) = O(NM(N +M)).

Problem Analysis Session B: Supporting everyone 17



J: Olympic goodies

Solved by 55 teams before freeze.
First solved after 37min by
doublETHink (ETH Zürich).

Problem Analysis Session J: Olympic goodies 18



J: Olympic goodies

Problem
Place strictly positive integer weights on a subset of the edges of a tree, such that the total
sum of edge weights equals P , and the maximum possible weight of a path is minimized.

Solution – Linear time & linear space
Place weights "as uniformly as possible" on edges incident to leaves

▶ Good intuition: longest path should go through leaves
Maximum weight for a path is:

▶ 2 ∗ (P/NumberOfLeaves) if P%NumberOfLeaves = 0
▶ 2 ∗ (P/NumberOfLeaves) + 1 if P%NumberOfLeaves = 1
▶ 2 ∗ (P/NumberOfLeaves) + 2 if P%NumberOfLeaves ⩾ 2

To compute the answer, all you have to do is (read the input and) count leaves.
Sample was misleading (yeah, well...), but: other solutions? proofs of correctness?

Problem Analysis Session J: Olympic goodies 19



C: Metro quiz

Solved by 4 teams before freeze.
First solved after 67min by
UNIBOis (University of Bologna).

Problem Analysis Session C: Metro quiz 20



C: Metro quiz

Problem
A metro map is given. A player thinks of a random line, the second must guess by asking if the
line goes through a given station. Find the strategy minimizing the expected (average) number
of questions.

Solution – O((M + N) ∗M ∗ 2N) time
Dynamic programming
State is two bitsets, (set of stations with constraints, constraints on these)
Number of states is M ∗ 2N , not 2N ∗ 2N

Problem Analysis Session C: Metro quiz 21



C: Metro quiz

Problem
A metro map is given. A player thinks of a random line, the second must guess by asking if the
line goes through a given station. Find the strategy minimizing the expected (average) number
of questions.

Solution – O((M + N) ∗M ∗ 2N) time
In a state S , choose the best station to ask about.
Call Si the state where the line must go through station i and S¬i the state where the line
must not go through station i .

M(S) = min
0⩽i<N

P(i) ∗M(Si ) + P(¬i) ∗M(S¬i )

Problem Analysis Session C: Metro quiz 22



C: Metro quiz

Problem
A metro map is given. A player thinks of a random line, the second must guess by asking if the
line goes through a given station. Find the strategy minimizing the expected (average) number
of questions.

Solution – O((M + N) ∗M ∗ 2N) time

M(S) = min
0⩽i<N

P(i) ∗M(Si ) + P(¬i) ∗M(S¬i )

To compute the probabilities, need to compute the lines still possible in a given state.
Precomputing it is slower than doing it on-demand (hash table is too large).

Problem Analysis Session C: Metro quiz 23



D: Flag performance

Solved by 2 teams before freeze.
First solved after 142min by
eXotic (École Polytechnique).

Problem Analysis Session D: Flag performance 24



D: Flag performance

Problem
Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – O(KN2p(N)) insertions/lookups & O(Np(N)) space
Cycle decomposition (without labels) enough to detect identity, e.g.,

Dynamic programming over integer partitions of N , e.g., 7 + 4 + 2 + 1 = 15.
⇒ number of integer partitions p(N) small, p(N) ⩽ p(30) = 5604.

All permutations: reverse process, start from identity backwards.
⇒ normalization required: number of permutations with decomposition (t1, . . . , tN),

c(t1, . . . , tN) = N!/
(
t1!t2! . . . tN ! · 1t12t2 . . .N tN

)
.

Problem Analysis Session D: Flag performance 25



D: Flag performance

Problem
Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – O(KN2p(N)) insertions/lookups & O(Np(N)) space
Cycle decomposition (without labels) enough to detect identity, e.g.,

Dynamic programming over integer partitions of N , e.g., 7 + 4 + 2 + 1 = 15.
⇒ number of integer partitions p(N) small, p(N) ⩽ p(30) = 5604.

All permutations: reverse process, start from identity backwards.
⇒ normalization required: number of permutations with decomposition (t1, . . . , tN),

c(t1, . . . , tN) = N!/
(
t1!t2! . . . tN ! · 1t12t2 . . .N tN

)
.

Problem Analysis Session D: Flag performance 25



D: Flag performance

Problem
Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – O(KN2p(N)) insertions/lookups & O(Np(N)) space
Cycle decomposition (without labels) enough to detect identity, e.g.,

Dynamic programming over integer partitions of N , e.g., 7 + 4 + 2 + 1 = 15.
⇒ number of integer partitions p(N) small, p(N) ⩽ p(30) = 5604.

All permutations: reverse process, start from identity backwards.
⇒ normalization required: number of permutations with decomposition (t1, . . . , tN),

c(t1, . . . , tN) = N!/
(
t1!t2! . . . tN ! · 1t12t2 . . .N tN

)
.

Problem Analysis Session D: Flag performance 25



D: Flag performance

Problem
Number of ways to sort arrays (permutations) of length N with K swaps (transpositions) ?

Solution – O(KN2p(N)) insertions/lookups & O(Np(N)) space
Cycle decomposition (without labels) enough to detect identity, e.g.,

Dynamic programming over integer partitions of N , e.g., 7 + 4 + 2 + 1 = 15.
⇒ number of integer partitions p(N) small, p(N) ⩽ p(30) = 5604.

All permutations: reverse process, start from identity backwards.
⇒ normalization required: number of permutations with decomposition (t1, . . . , tN),

c(t1, . . . , tN) = N!/
(
t1!t2! . . . tN ! · 1t12t2 . . .N tN

)
.

Problem Analysis Session D: Flag performance 25



G: Favourite dish

Solved by 2 teams before freeze.
First solved after 148min by
dETHroners (ETH Zürich).

Problem Analysis Session G: Favourite dish 26



G: Favourite dish

Problem
Calculate each person’s favorite dish based on the weights and scores.

Solution – O(NlogN +MlogM) time & linear space
If we calculate the whole score table, it takes O(NM) time which is too high.

We can sort the persons by their weight on taste, like:

Person \Dish 1 2 3 4
1 3.2 3.4 3.2 3.0
3 3.5* 3.5 3.0 3.5
2 4.4 3.8 2.4 5.0*

After sorting, each dish (each column) is a ascending or descending sequence.

Then sort the dishes by the first person’s score, like:

Person \Dish 2 1 3 4
1 3.4* 3.2 3.2 3.0
3 3.5 3.5* 3.0 3.5
2 3.8 4.4 2.4 5.0*

Problem Analysis Session G: Favourite dish 27



G: Favourite dish

Solution – O(NlogN +MlogM) time & linear space
For each dish, the scores look like an ascending or
descending polyline. We may start from the first dish,
process the dishes one by one, and maintain a "list of
currently highest score" ("h-list") for each person.

Problem Analysis Session G: Favourite dish 28



G: Favourite dish

Solution – O(NlogN +MlogM) time &
linear space

At any time, the h-list is also a polyline. We
can prove that the polyline of dish i and the
h-list after processing dish i − 1 have at most
one intersection point.

That intersection point (if exists) can be found
by binary search. With this algorithm, the
complexity can be reduced to
O(NlogN +MlogM).

Alternatively, this it can also be solved with
convex hull model.

Problem Analysis Session G: Favourite dish 29



G: Favourite dish

Solution – O(NlogN +MlogM) time &
linear space

At any time, the h-list is also a polyline. We
can prove that the polyline of dish i and the
h-list after processing dish i − 1 have at most
one intersection point.

That intersection point (if exists) can be found
by binary search. With this algorithm, the
complexity can be reduced to
O(NlogN +MlogM).

Alternatively, this it can also be solved with
convex hull model.

Problem Analysis Session G: Favourite dish 30



H: Break a leg!

Not solved before freeze.

Problem Analysis Session H: Break a leg! 31



H: Break a leg!

Problem
Given a non-crossing polygon, how many triples of vertices are such that the center of mass of
the polygon lies (strictly) inside the triangle formed by these vertices?

Solution – O(N log(N)) time complexity
1. Compute center of mass
2. Count every such triples
3. Fix bugs.

Problem Analysis Session H: Break a leg! 32



H: Break a leg!

Solution – O(N log(N)) time complexity
1. Compute center of mass
2. Count every such triples
3. Fix bugs.

easy given a triangulation of the polygon,
but this is not needed: a signed triangulation suffices.

Problem Analysis Session H: Break a leg! 32



H: Break a leg!

Solution – O(N log(N)) time complexity
1. Compute center of mass
2. Count every such triples
3. Fix bugs.

The only thing that matters is the angle formed with the center of mass (and any fixed line)

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Problem Analysis Session H: Break a leg! 33



H: Break a leg!

Solution – O(N log(N)) time complexity
1. Compute center of mass
2. Count every such triples
3. Fix bugs.

Floats are too imprecise
Exact representation of rationals may go out of bounds
The center of mass may be on an edge
The center of mass can be one of the vertices
Two vertices may have the same angle

Problem Analysis Session H: Break a leg! 34



M: In-order

Not solved before freeze.

1

2

3 4

5 6 7

8

1

2

3 4

5 6 7

8

Problem Analysis Session M: In-order 35



M: In-order

Problem
Given pre-order, post-order, a consecutive part of in-order. How many possible in-orders?

Solution – Linear time & linear space
Only knowing the pre-order and post-order cannot determine a binary
tree, but we can determine the tree to the following extent –>

(1) Question: if none of the inorder is known, how many possible
inorders are there?

Answer: 2number of nodes with 1 child.

Problem Analysis Session M: In-order 36



M: In-order

Solution – Linear time & linear space
(2) Question: if only root’s position is known?

Answer: In addition to (1), we know the root’s child (l/r) location (if
the root has 1 child).

Problem Analysis Session M: In-order 37



M: In-order

Solution – Linear time & linear space
(3) Question: if root + one other node X’s positions are known?

Problem Analysis Session M: In-order 38



M: In-order

Solution – Linear time & linear space
(3) Question: if root + one other node X’s positions are known?

Answer: we can determine the tree to the following extent –>

(4) Question: if root + multiple nodes’ positions are known?

Answer: For all known nodes’ all ancestors, if it has 1 child, its
child (l/r) location is determinate.

Problem Analysis Session M: In-order 39



M: In-order

Solution – Linear time & linear space
(5) Question: if only 1 node X’s position is known?

Answer: Only X itself’s and its ancestors’ child (l/r) location (if it
has 1 child) are relevant to its position in inorder. Therefore, we
need to calculate a combination.

Problem Analysis Session M: In-order 40



M: In-order

Solution – Linear time & linear space
(6) Question: if multiple nodes’ positions are
known?

Answer: A continous part in the inorder must
contain a single node with the maximum
height, we call it X.

Then we combine two independent things:
the child (l/r) location of X’s ancestors
the child (l/r) location of the nodes in the
subtree whose root is X

Problem Analysis Session M: In-order 41


	
	Statistics
	I: Throwing dice
	F: Programming-trampoline-athlon!
	E: Nicest view
	L: Broken trophy
	A: Card game
	K: Team selection
	B: Supporting everyone
	J: Olympic goodies
	C: Metro quiz
	D: Flag performance
	G: Favourite dish
	H: Break a leg!
	M: In-order

